隨著精密、超精密加工技術(shù)的發(fā)展,材料在納米尺度下的力學(xué)特性引起了人們的極大關(guān)注研究。而傳統(tǒng)的硬度測(cè)量方法只適于宏觀條件下的研究和應(yīng)用,無(wú)法用于測(cè)量壓痕深度為納米級(jí)或亞微米級(jí)的硬度(即所謂納米硬度,nano-hardness)。
近年來(lái),測(cè)量納米硬度一般采用新興的納米壓痕技術(shù)(nano-indentation),由于采用納米壓痕技術(shù)可以在極小的尺寸范圍內(nèi)測(cè)試材料的力學(xué)性能,除了塑性性質(zhì)外,還可反映材料的彈性性質(zhì),因此得到了越來(lái)越廣泛的應(yīng)用。
納米壓痕技術(shù)也稱深度敏感壓痕技術(shù)(Depth-Sensing Indentation,DSI),是簡(jiǎn)單的測(cè)試材料力學(xué)性質(zhì)的方法之一,可以在納米尺度上測(cè)量材料的各種力學(xué)性質(zhì),如載荷-位移曲線、彈性模量、硬度、斷裂韌性、應(yīng)變硬化效應(yīng)、粘彈性或蠕變行為等。
納米壓痕儀主要用于微納米尺度薄膜材料的硬度與楊氏模量測(cè)試,測(cè)試結(jié)果通過力與壓入深度的曲線計(jì)算得出,無(wú)需通過顯微鏡觀察壓痕面積。
納米壓痕儀的基本組成可以分為控制系統(tǒng)、移動(dòng)線圈系統(tǒng)、加載系統(tǒng)及壓頭等幾個(gè)部分。壓頭一般使用金剛石壓頭,分為三角錐或四棱錐等類型。試驗(yàn)時(shí),首先輸入初始參數(shù),之后的檢測(cè)過程則由微機(jī)自動(dòng)控制,通過改變移動(dòng)線圈系統(tǒng)中的電流,可以操縱加載系統(tǒng)和壓頭的動(dòng)作,壓頭壓入載荷的測(cè)量和控制通過應(yīng)變儀來(lái)完成,同時(shí)應(yīng)變儀還將信號(hào)反饋到移動(dòng)線圈系統(tǒng)以實(shí)現(xiàn)閉環(huán)控制,從而按照輸入?yún)?shù)的設(shè)置完成試驗(yàn)。